Implementing Absolute Addressing
in a Motorola 68000 Processor
(DRAFT)

Dylan Leigh (s3017239)

2009

This project involved the further development of a limited 68000 processor core, developed by Dylan Leigh for
the subject Advanced Digital Design 1 (EEET2192) during semester 1 2008.

The CPU core originally supported only immediate and register addressing, and used one read state for each
data read. This project aims to extend the system by looping the read states, allowing for absolute and more
advanced addressing modes.

This document describes the CPU features and usage, including the operation of the CPU on the DE1 devel-
opment board, as well as the process of implementing the new addressing mode. The development of the initial
CPU design is not covered in detail.

CONTENTS DRAFT VERSION

CONTENTS

Contents

I Features and Usage

1 Features

1.1 Current Capabilities o
1.2 Development Toolso

2 CPU Instruction Set

2.1 Moveo e
2.2 Branch.
23 Add ...
24 And ...
2.5 No-0p . . . o e

3 Interface with DE1 Board

3.1 Overview
3.1.1 Structural Design Notes
3.1.2 Pin Assignments L o

3.2 Using the Interface o o
321 Outputs

II Development

4 Design

4.1 Early Component Design
4.2 Final Component Design
4.3 Initial Fetch-Decode-Execute Cycle States
4.4 TInstruction Decodero
4.5 MMU and Buses e
4.6 Design for Absolute Addressing

4.6.1 Final Fetch-Decode-Execute Cycle States

5 Implementation Notes

5.1 Debugging

6 Testing

6.1 Sample Programs
6.1.1 Move/Add/Branch Test
6.1.2 Move Flag and Branch Test
6.1.3 Move/And/Branch Test
6.1.4 Absolute Addressing Test

6.2 Simulation Waveforms oL Lo
6.2.1 Move/Add/Branch Test
6.2.2 Move Flag and Branch Test
6.2.3 Move/And/Branch Test, .
6.2.4 Absolute Addressing Test L.

Dylan Leigh #3017239 DRAFT VERSION

Page 2 of 52

CONTENTS DRAFT VERSION

CONTENTS

7 Future Development

7.1 Hardware RAM
7.2 Imstruction Set
7.3 Extended addressing modes oL
7.4 Parameterizing memory access L

7.5 System Mode instructions Lo Lo

IIT Appendices

A Appendix A: CPU Source Code

A1l m68k cpucore.vhd

B Appendix B: DE1 Interface Source Code

B.1 m68k_del.vhd
B.2 hexTseg.vhd
B.3 clockdiv.vhd

C Appendix C: Test MMU Files

C.1 m68k fakemmu l.vhd L oo
C.2 m68k fakemmu 2.vhd oL o
C.3 m68k fakemmu 3.vhd oL o
C.4 m68k fakemmu 4.vhdo oo

D Appendix D: Makefile

E Appendix E: Timing and Performance

E.1 Timing o . 0 e
E.2 Logic Elements Used
E.3 CPU Performance

Dylan Leigh #3017239 DRAFT VERSION

18

18

.............. 18

32

.............. 32
.............. 37
.............. 38

40

.............. 40
.............. 43
.............. 45
.............. 48

51

Page 3 of 52

1 FEATURES DRAFT VERSION

Part 1

Features and Usage

1 Features

1.1 Current Capabilities

The CPU described here implements 5 instructions from the Motorola 68000 instruction set:

e Move (MOVE),

Branch Always (BRA),

Add (ADD),

Logical And (AND),
e No Operation (NOP).

The implementation supports data register, address register, immediate and absolute addressing for these in-
structions. The CPU is completely orthogonal; all operations can be used with all addressing modes'.

8 Data registers and 8 Address registers can be read from and written to. Although no currently implemented
instructions read them the 5 user mode flags - Carry (C), Overflow (O), Negative (N), Zero (Z) and Sign Extend
(X) - are implemented and are set by relevant operations.

This implementation has an an added CPU panic feature. On any invalid, illegal or unimplemented instruction
or addressing mode, the CPU will set the “panic” line high and halt until the CPU has been manually reset. In
simulation an assertion will be raised describing the error.

A DEI1 interface entity? which allows demonstration and examination of the CPU on the DE1 boards is also
provided. This board uses the Cyclone IT EP2C20F484C7 FPGA device.

1.2 Development Tools

The open source GHDL compiler (http://ghdl.free.fr/) was used for most of the EEET2192 development
and the initial testing. Omnce all the operations had been tested successfully in simulation the system was
synthesized using Quartus and tested on real hardware. The new version with absolute addressing has been
developed using GHDL only and has not been tested in hardware.

The GHDL development flow is similar to using GCC or similar command line compilers. A VHDL file is
analyzed to produce an object file based on an entity. This can then be linked with other object files - including,
optionally, object files compiled from other sources, such as C or C++ code - to produce a native executable
binary. The binary is then run to simulate the system. Assertions and reports print data to the console, and
the program can optionally write a VCD or GHW waveform file.

GTKWave (http://gtkwave.sourceforge.net/) was used to view the output waveforms from the simula-
tions, and to produce the waveform diagrams used in this document.

GNU or BSD Make (http://www.gnu.org/software/make/) can be used to automate this build and execution
process. A makefile is provided in the Appendix® which builds all code and runs the three sample 68000 programs
- simply executing “make” at the command line will suffice. The entire build process takes less than a second to
build the CPU with GHDL on a typical desktop system, whereas analysis and synthesis under Quartus takes
approximately 25 seconds, and the full build process can take minutes.

'Read only locations and modes (such as immediate addressing) cannot be used for the destination.
2Refer to Section 3 on page 6.
3Section D on page 51.

Dylan Leigh #3017239 DRAFT VERSION Page 4 of 52

http://ghdl.free.fr/
http://gtkwave.sourceforge.net/
http://www.gnu.org/software/make/

2 CPU INSTRUCTION SET DRAFT VERSION

2 CPU Instruction Set

For more information on each instruction refer to The M68000 Programmer’s Reference Manual, 5th ed, 1979-
1986 Motorola Inc., ISBN 0-13-541475-X. A complete discussion of each operation is beyond the scope of this
report.

This section describes what each instruction does in this implementation; the full 68000 implements more
instructions and addressing modes.

Note that due to limitations of the “Fake MMU” simulated RAM entities used for testing, the “RAM” cannot
be written to, although the CPU design itself supports writes to RAM.

2.1 Move

e Identified by “0001”, “0010” or “0011” at the start of the instruction, depending on data size.
e Copies 8, 16 or 32 bits of data from a register, memory location or a constant to a register.

e Sets Zero and Negative flags if the data copied is zero or negative.

2.2 Branch

e Identified by “0110” at the start of the instruction.

e Performs an 8 or 16 bit signed addition on the program counter. For 8 bit data the offset is encoded in
the instruction itself; 16 bit data is read in a similar manner to immediate addressing.

e Changes no flags.

2.3 Add

e Identified by “1101” at the start of the instruction.

e Performs an addition of 848, 16+16 or 32+32 bits of data. One of the operands (which the data is saved
in) must be a data register, but the other can be a memory location, immediate data or an address or
data register.

e Sets Zero and Negative flags if the data copied is zero or negative.

e Note that this operation should set the Carry and Overflow flags, however this requires a proper ALU
component to be implemented which could not be completed due to time constraints. See the “Planned
Features not Fully Implemented” section®.

2.4 And

e Identified by “1100” at the start of the instruction.

e Performs a logical and of 8, 16 or 32 bits of data. One of the operands (which the data is saved in) must
be a data register, but the other can be a memory location, immediate data or an address or data register.

e Sets Zero and Negative flags if the data copied is zero or negative.

2.5 No-op

e Identified by “0100111001110001” as the instruction.
e Performs no changes (other than changing the PC during the fetch cycle).

e Changes no flags.

4Section ?? on page 7.

Dylan Leigh #3017239 DRAFT VERSION Page 5 of 52

3 INTERFACE WITH DE1 BOARD DRAFT VERSION

3 Interface with DE1 Board

The source code for this interface is in the Appendix, section B.1 on page 32.

3.1 Overview

The DE1 interface component allows examination and testing of the CPU implementation on the DE1 board
and includes the following facilities:

e “MMU” with 4 sample programs (see Testing®).

e Display of flags, lower byte of address and data buses and CPU/MMU outputs including MMU requests
and the panic line.

e Manually operated clock and free running clock with selectable speeds.

3.1.1 Structural Design Notes

The interface file includes the code for links between the CPU outputs and the board lights, and the CPU itself
is a component of the interface. The interface also contains the behavior of the MMU itself, a nested set of case
statements which put different values on the data bus depending on the address bus and the program selected.

The hex display logic was previously used in the EEET2192 laboratories and is included verbatim. The source
can be found in the Appendix®.

The adjustable divider used to change the speed of the clock was modified from code used in the EEET2192
laboratories, which was itself a modified version of the behavioral counter code from the lab 2 specification.
Source for this file is also located in the Appendix’.

3.1.2 Pin Assignments

As this component is not intended for use with other boards, to simplify assignments the names of board pins
were used directly as port names. The standard DE1 pin assignments were used.

3.2 Using the Interface

Initialization:

e Set switch 0 off to disable the free running clock.

e Choose the test program with switches 9 and 8:

— 00: Test move, add and branch.
— 01: Test move flag setting and branch.
— 10: Test move, and and branch.

— 11: Test absolute addressing.

e Reset the CPU with key 3.
At this point the CPU can be traced using the manual clock, key 0. To use the free running clock:

e Choose speed with switches 3 to 1.
e Activate the clock with switch 0.

e The clock speed can be changed and the clock can be stopped and started at any time.

5Section 6 on page 12.
6Section B.2 on page 37.
7Section B.3 on page 38.

Dylan Leigh #3017239 DRAFT VERSION Page 6 of 52

3 INTERFACE WITH DE1 BOARD DRAFT VERSION 3.2 Using the Interface

3.2.1 Outputs

The following outputs are displayed on the DE1 board LEDs:
e Hex digits 2 and 3 show the lower byte of the address bus. This is usually the location of the last memory
access, or the PC minus 2.

e Hex digits 0 and 1 show the lower byte of the data bus. Note that the data bus is cleared after a request
has been fulfilled, so data may only show up here for one or two clock cycles.

e Red LED 9 hows the panic line. If this is lit the CPU has halted and must be restarted with the reset
(key 3).

e Red LED 4 shows the clock signal.

e Red LED 1 indicates the bus read-write line is high. This may appear on initialization or briefly on reset,
but should not be lit for any sample programs.

e Red LED 0 indicates a bus request (i.e. the CPU has requested the MMU put the data at the address
bus location on the data bus).

e Green LED 7 is lit by the MMU when the bus request has been fulfilled.

e Green LEDs 6 and 5 show the bus data size. For all sample programs word or byte data is used; as
immediate byte data is packed into a word all requests from the sample programs will be word length -
441077-

e Green LEDs 4 to 0 show the CPU flags:

4 is X (sign extend) (never lit by implemented operations)

(
— 3 is N (negative) (lit by some operations)

2 is Z (zero) (lit by some operations)

— 11is V (overflow) (never lit by implemented operations)
- 0is C (

carry) (never lit by implemented operations)

Dylan Leigh #3017239 DRAFT VERSION Page 7 of 52

4 DESIGN DRAFT VERSION

Part 11

Development

4 Design

4.1 Early Component Design

This is the initial design from the EEET2192 project.

Adder

CPU — .
M instruction Onboard
Decoder Memory
L]
DE1 Board Interface
(Lights and Switches)
Program Counter
@ Status Register
Data Bus
Address
bata Address Bus
Register Register
File File’

4.2 Final Component Design

This represents the final design from the EEET2192 project and this project. Not all ports or registers are
shown explicitly on this diagram - for example, the buses include several control lines used to signal requests

and acknowledgments.

CPU

- —_- - —
Instruction Decoder

Program Counter |
Status Register |

Internal Decoder |

DE1

DE1 Board Interface
(Lights and Switches)

Onboard
Memory

Registers
Data Address Data Bus
Register Register
File File’

N Address Bus /1

Instead of using a separate ALU entity, all arithmetic operations are performed using VHDL operators in the
CPU entity, simplifying the implementation. The synthesizer made use of the dedicated logic elements on the
FPGA chip for these instructions.

The onboard memory access was not implemented and instead four “Fake MMU?” entities® simulate memory
reads for four different sample programs. These can be selected from the DE1 interface. In simulation these
entities will raise a warning if there is an attempt to read from a location that should not be required by the
program.

8Source code for these entities is in section C on page 40.

Dylan Leigh #3017239 DRAFT VERSION Page 8 of 52

4 DESIGN DRAFT VERSION3 Initial Fetch-Decode-Execute Cycle States

4.3 Initial Fetch-Decode-Execute Cycle States

This diagram shows the CPU’s fetch-decode-execute cycle from the EEET2192 project, when the only addressing
modes implemented were immediate and register.

The labelled double arrows with incoming double arrow indicate a signal which must be received for that state
to advance. The plain labelled arrows indicate the state flow for a particular operation (which does not follow
the common state flow at that point).

Reset Busdone
FETCH FETCH i EXEC
FDC_HALT & - - DECODE » —
- —»» | READINS —»| WAITINS — > »| READSRC
A N Short l
o-op Branch
EXEC_
Tong | WAITSRC
Busdone Branches Branch [€@——
—_—p) Busdone
\4
EXEC_ A
WAITRSLT EXEC_
READDST
T \ 4 \ 4 l
EXEC EXEC EXEC EXEC
_ ¢ _ < _ » _
PUTRSLT DOFLAGS DOOP Busdonef WAITDST

Note that moving to the FDC_HALT state is not shown. Any illegal operations (including trying to run
unimplemented operations or operations with unimplemented addressing modes) result in the CPU panic line
being set high and the CPU changing to he FDC_HALT state until it is reset manually.

The final CPU state cycle design is provided in section 4.6.1 on the following page.

4.4 Instruction Decoder

The instruction decoder is wholly contained within the CPU code. Due to the tight integration with the CPU
no attempt was made to implement it as a separate component.

The decoder determines the current operation, and saves it to a state register. Any data sizes and address-
ing modes are determined and saved in separate CPU-internal registers, in a format common to most 68000
operations. These registers are read in later execute cycle states to allow common data fetching and saving
procedures to be performed using operation-agnostic code.

4.5 MMU and Buses

Initially the implementation was intended to use real hardware RAM, which would be initialized with a program
and which could be written to (see the “Early Component Design® above?).

Due to lack of time a real MMU component could not be completed, and the implementation instead has
read only “memory”, which is emulated by a fake MMU which uses a case statement on the address bus to
put different values on the data bus. 4 sample programs were written and assembled which test various CPU

instructions and addressing modes. These may be selected in the DE1 board interface'® or run in simulation'®.

9Section 4.1 on the previous page.
10Section 3 on page 6.
MSection 6 on page 12.

Dylan Leigh #3017239 DRAFT VERSION Page 9 of 52

4 DESIGN

DRAFT VERSION

4.6 Design for Absolute Addressing

4.6 Design for Absolute Addressing

For absolute addressing memory reads, it is necessary for the CPU to make two reads from memory - one to

get the address, and another to get the data from that address.

The original CPU state cycle design allowed for only one read and wait. The new design “loops” these states,
using a new register to keep track of how many passes have been completed. This design supports up to three

passes, which will be sufficent to allow all addressing modes on the 68000 to be implemented.

4.6.1

FOC_HALT

Final Fetch-Decode-Execute Cycle States

iBusdone

& reset FETCH. I DEGODE | EAES
——P» | READINS Pl WAITINS — =" READSRC
4 N Short ‘
oop Branch
EXEC_
{ tong "| WAITSRG
Busdone Branches Branch
—_— Busdo
¥
r
EXEC_ Addr. Pass
WAITRSLT ™ EXEC_
READDST
T L\ l
EXEC_ EXEC_ | EXEC _ EXEC_
PUTRSLT ; DOFLAGS DOOP «“ WAITDST
fBusdome

Dylan Leigh #3017239

Addr. Pass

DRAFT VERSION

Page 10 of 52

5 IMPLEMENTATION NOTES DRAFT VERSION

5 Implementation Notes

Implementation was straightforward, with a new test program developed!? to test the new addressing mode.

The new CPU core has not yet been tested in hardware.

5.1 Debugging

The GTKWave software was used extensively for debugging and testing. An example is shown below:

B GTKWave - fakemmu_4.ghw

File Edit Search Time Markers view Help

P @ Q Q [li:j E::[l :j E:; From{ 0 sec |To{ 300 ms | @ Marker: 14 ms | Cursor: 8110 us

W SsT _Signal Wave:

EFMTGER_TaRammu_a ([s s 13 ms

CPUCTI’ed databus[31:8] =
rslt_data addrbus[31:0] =

dst_data busd |

src_data usdone =
status_register busreq=
program_countel program_counter[31:0] =
address_register src_datal31:0] =
diti{eglsters next_fdc_state =

< S 28 current_fdc_state =
current_op =

Signals ok o
[] src_data[31:0] extaddrpass[1:0] =

.
Filter:
|Append‘ | Insert | | Replace | By I =~ I =

One error found late during development is shown above. Sample program 4!3 was being run to test absolute
addressing mode, and Fake MMU 4 was warning that at 14ms, a memory request was made for an unhandled
location (i.e. one which the program should not have accessed during normal operation).

As can be seen in the screenshot, the CPU was requesting a read of location $0, instead of the data at $140.
Tracing through the CPU code it was found that the address for the second memory request was being taken
directly from the data bus, instead of the SRC_DATA internal register. The $140 had already been recieved,
acknowledged and placed in the SRC_DATA register. Transferring SRC_DATA to the address bus during the
second EXEC_READSRC pass fixed the error.

12See section 6.1.4 on the following page.
13 Assembly source code for the program is in section 6.1.4 on the next page; the corresponding MMU source code is in section C.4
on page 48.

Dylan Leigh #3017239 DRAFT VERSION Page 11 of 52

6 TESTING DRAFT VERSION

6 Testing

Most parts of the system were developed using the open source GHDL compiler (see Design Tools!?), which
builds test-benches as native binary applications. These applications will simulate the system and output
relevant assertions and reports. They can also generate waveform files.

Four sample assembly programs were written which use various features of the implemented CPU. These were
encapsulated within “fake” MMU programs which set the data bus to the machine code values of the program
when the CPU requested them. These programs also reset the system when starting and provided a clock signal
to operate the CPU.

The VHDL source for the MMU programs is in the Appendix!'®; the assembly programs themselves are provided
below.

6.1 Sample Programs

Annotated simulation waveforms for these programs can be found in section 6.2 on the next page.

6.1.1 Move/Add/Branch Test

org $100
move.w #02, di
move.w #03, d2

add.w d2, di

add.w #5, dO ; note dO will continue increasing while program loops
bra $100

end

6.1.2 Move Flag and Branch Test

org $100

move.w #0, dl ; sets zero flag
move.w #BEEF, d2 ; sets negative flag
bra $100

end

6.1.3 Move/And/Branch Test

org $100

move.w #$AAAA, di

move.w #$5555, d2

and.b d2,d1 ; sets zero flag
and.w $#FFFF, d0O

bra $100

end

6.1.4 Absolute Addressing Test

org $100
move.w $10A, di
move.w $1BB, d2
bra $100

org $10A

dw $1111

org $1BB

dw $2222

end

MSection 1.2 on page 4.
15Section C on page 40.

Dylan Leigh #3017239 DRAFT VERSION Page 12 of 52

6 TESTING DRAFT VERSION 6.2 Simulation Waveforms

6.2 Simulation Waveforms

These images were produced using GTKWave (see Tools, section 1.2 on page 4). A full set of waveforms would
be too large to include in this report. A selected number which show state and register transitions have been
included. The source code for the assembly programs running on the CPU during these tests is in section 6.1
on the previous page.

6.2.1 Move/Add/Branch Test

-Signals Waves
Time
clock
current_op
current_fdc_state
databus[31:0] 000207¢C
addrbus[31:0]
program_counter[31:0] ooooole0 @eoooez | poooodod
status_register[15:0]
data_registers[0]1[31:0]
data_registers[1][31:0]
data_registers[2][31:0]
dst_data[31:0]
sre_data[31:0] eo00OOO0 T moozoo0z
busreqg []
busdone

This is just after reset (note the current_op is no-op until the first instruction is decoded). The instruction is
fetched and the program counter incremented by 2, and then immediate data is fetched from the PC location
(and the PC is incremented again). Note that the destination is a data register so there are no memory requests
and no activity during the destination read states.

Signals
Time

clock

current_op

current_fdco_ state
databus[31:0]
addrbus[31:0]

program counter[31:0]
status_reqgister[15:0]
data_registers[0][31:0]
data_registers[1][31:0]
data_registers[2][31:0]
dst_data[31:0]
sre_data[31:0] oo030003 0000003 |

busreq

busdone

This screenshot shows the end of the move instruction. The data is written to the destination (in this case,
data register 2) during the EXEC_PUTRSLT cycle. The next instruction is an add and we can see it decoded here.
The operands are registers so we do not see any memory accesses until the source data is placed into the CPU
internal src_data register.

Signals
Time
clock
current_op
current_fdc_ state exec_readdst jexec exec_doflags jexec_putrslt exec

databus[31:0]
addrbus[31:0]
program_counter[31:0]
status_register[15:0]
data_registers[0][31:0]
data_reqgisters[1][31:0]
data_reqgisters[2][31:0]
dst_data[31:0]
sre_data[3l1:0]
rslt_data[31:0] 0000005

busreq

busdone ||

This screenshot shows the execution of the add instruction. The source and destination - both data registers
- are read into the src_data and dst_data internal registers. During the EXEC_DOOP cycle these are added and

Dylan Leigh #3017239 DRAFT VERSION Page 13 of 52

6 TESTING DRAFT VERSION 6.2 Simulation Waveforms

the result is placed in the internal rslt_data register. This is saved to the destination during the EXEC_PUTRSLT
cycle.

6.2.2 Move Flag and Branch Test

-Signals
Time
current_fde_state fetoh_readi+ [Fetoh_w+ /decode lexec we+ lexec_wa+ lexec_wet jexec_wa+ |exec_do+ jexec_do+ |exec_pu+ jexec_wat /Eetoh_x+ |feto
current_op opwop epmeve
clock

rslt_data[31:0]
dst_data[31:0]
srco_data[31:0]

program_counter[31:0]

status_register[15:0] w0
databus[31:01 | | T T S
addrbus[31:0] 00000100 0000102

husreq
data_registers[2][31:0]
data_registers[1][31:0]

This screenshot shows the first instruction, which moves the immediate value 0 to d1. As the value is zero,
the initial value of the data bus, we cannot see it being put on the data bus (although the PC is incremented
when the immediate data is read). As d1 is also already zero, we do not see this change. However, during the
EXEC_DOFLAGS cycle we can see bit 3 of the status register is set, indicating the last instruction generated a
zero result.

Signals W
Time

current_fde_state

current_op

clock

rslt_data[31:0]

dst_data[31:0]
src_data[31:0] oo000000

vovooies joeveeies peweess oo

status register[15:0]

databus[31:0]

addrbus[31:0]

busreq

data_registers[2][31:0]

data_registers[1][31:0]

The second move, $BEEF to d2, is visible here. We can see the instruction being read, decoded, the immediate
value being read and placed in the src_data internal register, and then in the rslt_data register. The status
register changes from 4 to 8, indicating that now the negative flag is set - as a 16 bit value $BEEF is a negative
number.

-Signals Waves
Time

current_fdc_state
current_op
clock
rslt_data[31:0]
dst_data[31:0]
src_data[31:0]

status_register[15:0]

databus[31:0] 0006000 00000000 Do00207C
addrbus[31:0] noooo108 00000100
busreqg

data_registers[2][31:0]
data_reqgisters[1][31:0]

The full set of cycles for a long branch instruction can be seen here. After the instruction is decoded the next
word is read (3FFF4 or -12 decimal). This is sign extended to 32 bits (the $FFFFFFF4 in src_data) and added
to the program counter in the EXEC_DOOP state, returning it to the start of the program ($100). We can see
that in a branch the next instruction starts immediately - state after EXEC_DOOP is FETCH_READINS, normally
it would be EXEC_PUTRSLT.

Dylan Leigh #3017239 DRAFT VERSION Page 14 of 52

6 TESTING DRAFT VERSION 6.2 Simulation Waveforms

6.2.3 Move/And/Branch Test

i
wn

~Sign

current_op

current_fde_state

busrw

clock

databus[31:0]

addrbus[31:0] 00000104
rslt_data[31:0]
sro_data[31:0]
status_register[15:0]
program_counter[31:0]
data_registers[2][31:0]
data_registers[1]1[31:0]
data_registers[0][31:0]

This screenshot shows the first two instructions, which move $AAAA and $FFFF into d1 and d2.

-Signals
Time

current_op
current_fde_state
busrw

clock

databus[31:0]
addrbus[31:0]
rslt_data[31:0]
sro_data[31:0]
status_reqgister[15:0]
program_counter[31:0]
data_registers[2][31:0]
data_registers[1][31:0]
data_registers[0][31:0]

The next instruction is a byte size and operation on d1 and d2 - and 1010 with 0101. The lower byte is set to
0 and the zero flag is set.

Signals
Time
current_op
current_fdc_state
busrw
clock
databus[31:0] 0000cO7c__ 00000000 DOOOFFFF 00000000
addrbus[31: 0] 0000010 jpooooloc
#0000000
rslt_data[31:0] 10000000
sro_data[31:0] ooooss88
status_reqgister[15:0] 004
program_counter[31:0] 0000010 0000i0C [00000L0E
data_registers[2][31:0] 0005555
data_registers[1][31:0] VD00RADD
data_registers[0][31:0] 00000000

The next instruction is an and with immediate data ($FFFF) and d0 (0), again producing zero.

Dylan Leigh #3017239 DRAFT VERSION Page 15 of 52

6 TESTING DRAFT VERSION 6.2 Simulation Waveforms

6.2.4 Absolute Addressing Test

Signal Wave:

Time
addrbus[31:0] =|
databus[31:08] =
busreq=
clock=
src_data[31:0] =
program_counter[31:0] =|
extaddrpass[1:0] =|
current_fdc_state=
next_fdc_state=|
current_op=
data_registers[1][31:8] =
data registers[2][31:0]=

This screenshot shows the source read states (EXEC_READSRC and EXEC_WAITSRC) looping to fetch the address
of the data from $102 (pass 1 - EXTADDRPASS changes from 00 to 01) and then again to fetch the data from
that address (at $1A0 - EXTADDRPASS changes from 01 to 10).

Signal Wave:

Time
addrbus[31:0] =
databus[31:0] 5
busreq=|
clock=|
src_data[31:0] =
program counter[31:0] =
extaddrpass[1:0] =
current_fdc_state =|
next_fdc_states
current_op =|
data registers[1][31:0] 5
data registers[2][31:0] =

The data from $1A0 is put into d1 during the EXEC_PUTRSLT state. When the CPU cycle restarts, EXTADDRPASS
is reset to 00 (during the FETCH_READINS state). To the left of this screenshot we can see the start of the next
move instruction where EXTADDRPASS is again used in a pair of EXEC_READSRC and EXEC_WAITSRC states. The
address $1BB is read from location $106 (within the program code) and the data $2222 is read from address

$1BB.

“Signal -Wave:

Time
addrbus[31:0] =
databus[31:0] =
busreg=|
clock=|
src_data[31:8] 5
program_counter[31:8] 5
extaddrpass[1:8] =
current_fdc_state=|
next_fdc_state=|
current _op=
data registers[1][31:0]
data registers[2][31:0]

At the end of the second move instruction $2222 is loaded into data register 2. At the end of this diagram the
branch instruction is executing and the PC returns to the start of the program (location $100).

Dylan Leigh #3017239 DRAFT VERSION Page 16 of 52

7 FUTURE DEVELOPMENT DRAFT VERSION

7 Future Development

7.1 Hardware RAM

7.2 Instruction Set

7.3 Extended addressing modes

7.4 Parameterizing memory access

It may be advantageous to replace the memory access states (see the state diagram '¢) with a single pair of
access-wait states which are parametrized depending on the addressing mode. This would allow the same code
to be used for immediate and absolute addressing for source and destination, as well as more advanced modes
such as register indirect.

7.5 System Mode instructions

16Section 4.3 on page 9.

Dylan Leigh #3017239 DRAFT VERSION Page 17 of 52

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

A APPENDIX A: CPU SOURCE CODE DRAFT VERSION

Part 111

Appendices

A Appendix A: CPU Source Code

A.1 m68k cpu_core.vhd

— CPU core for 68k
— Dylan Leigh s3017239

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std . all;

entity m68k_cpu_core is
port (

reset: in std_logic; — active high

clock: in std_logic;

panic: out std_logic;

—— bus controls

busrw: out std_logic;

busreq: out std_logic;

busdone: in std_logic;

busdatasize: out std_|
— 68k convention :

—— address bus
addrbus: out std_logic
—— data bus

databus: in std_logic_
— memory writes TODO

—— for debugging
flags: out std_logic_v
)

end m68k_cpu_core;

— set high when CPU panics and halts
—— nothing changes until manually reset

— bus read/write: zero is write

— set to 1 to make a request from the MMU
— is set to 1 when request fulfilled by the MMU

ogic_vector (1l downto 0);
01: byte (8), 10: word(16), 11: long (32)

_vector (31 downto 0);

vector (31 downto 0);

databus: inout std_logic_vector (31 downto 0)

ector (4 downto 0)

architecture behaviour of m68k_cpu_core is

type FDC_State_Type is (FETCH_READINS, FETCH_WAITINS,

DECODE,

— note source or destination may be immediate data,
— which still has to be read from memory (and

— waited on)

EXEC_READSRC, EXEC_WAITSRC, — EXEC_PUTSRCALU,
EXEC_READDST, EXEC_WAITDST, — EXEC_PUTDSTALU,

EXEC_DOOP, EXEC_DOFLAGS,
EXEC_PUTRSLT, EXEC_WAITRSLT,
FDC_HALT) ;

signal current_fdc_state,

— Note we are using "ins
— including operands and
— "Operation” is what th
— internal use only

Dylan Leigh #3017239

next_fdc_state : FDC_State_Type;
truction” to refer to the whole thing

"opcode” to refer to the opcode part.
e opcode represents

DRAFT VERSION

Page 18 of 52

53

55

57

59

61

63

65

67

69

71

73

75

T

81

87

89

91

93

95

97

99

101

105

107

109

111

APPENDIX A: CPU SOURCE CODE DRAFT VERSION

A.1 m68k_cpu_core.vhd

Dylan Leigh #3017239

type CPUOp is (OP_MOVE, OP_ADD, OP_AND, OP_BRA, OP_NOP);

signal current_op: CPUOp;

signal current_inst: std_logic_vector (15 downto 0);

signal opdatasize: std_logic_vector (1l downto 0);

—— effective address codes, either copied directly from the

—— determined from it during decode
— internal use only

signal src_addrcode: std_logic_vector (5 downto 0);
signal dst_addrcode: std_logic_vector (5 downto 0);

—— internal use only — set for the second memory access

— pass, for extended adressing TODO

signal extaddrpass: std_logic_vector (1l downto 0);
— internal use only — effective address

location

signal effaddr: std_logic_vector (31 downto 0);

— programmer registers
— TODO: these should be replaced later

signal data_registers: RegisterSet;
signal address_registers: RegisterSet;

with clocked
type RegisterSet is array (0 to 7) of std_logic_vector (31 downto 0);

registers

signal program_counter: std_logic_vector (31 downto 0);
signal status_register: std_logic_vector (15 downto 0);

— internal registers

signal src_data: std_logic_vector (31 downto 0);
signal dst_data: std_logic_vector (31 downto 0);
signal rslt_data: std_logic_vector (31 downto 0)

begin

—— TODO component registers

flags <= status_register (4 downto 0);

instruction or

fdc_activity: process (reset, clock) — busdone for wait states TODO
begin
if reset = "1’ then

— XXX: SET INTER—CYCLE SIGNALS AND ALL OUTPUTS TO KNOWN

— INITIAL VALUES HERE
program_counter <= x"00000100";
status_register <= x"0000";
next_fdc_state <= FETCH_READINS;

— Starting from fetch state the

—— should not affect anything but are

current_op <= OP_NOP;
current_inst <= x"0000";

opdatasize <= "10"; — word
src_addrcode <= "000000"; — dO
dst_addrcode <= "000000"; — dO

extaddrpass <= "00";

src_data <= x"00000000";
dst_data <= x"00000000";
rslt_data <= x"00000000";

for i in 0 to 7
loop

data_registers (i) <= x"00000000";

end loop;

DRAFT VERSION

instruction decoding signals
included here anyway

Page 19 of 52

115

117

119

125

127

129

133

135

137

145

147

153

155

157

161

163

165

167

171

173

A APPENDIX A: CPU SOURCE CODE DRAFT VERSION A.1 m68k_cpu_core.vhd

addrbus <= x"00000100";

— TODO no mem writes databus <= x"00000000";
busreq <= '07;

busrw <= '0';

busdatasize <= "00";

panic <= '0";

else — set next state based on current state
—— start huge current state statement of doom
if rising_edge(clock) then
case current_fdc_state is

when FETCH_READINS =>
addrbus <= program_counter;

busrw <= '0’; —read
busdatasize <= "10"; —word size
busreq <= 'l1'; —request

next_fdc_state <= FETCH_WAITINS;
extaddrpass <= "00";

when FETCH_WAITINS =

if busdone = '1' then

program_counter <= std_logic_vector (
unsigned(program_counter) + 2);

busreq <= '0'; —end request
current_inst <= databus(15 downto 0);
next_fdc_state <= DECODE;

end if; — busdone

when DECODE =>
— start outer big decode case statement
— Note — this is more complex than just one case statement on
—— one set of bits as some operations only have 2 unique bits,
—— and some have 8 unique bits
case current_inst(15 downto 12) is
—— TODO when "0000" => — cmpi (immediate)
— current_op <= OP_CMPI,
— TODO decode effective addresses
— next_fdc_state <= EXEC_READSRC;

when "0001" => — move.b
current_op <= OP_-MOVE;
opdatasize <= "01"; — byte

—— decode effective addresses
src_addrcode <= current_inst (5 downto 0);
dst_addrcode <= current_inst (11 downto 6);
next_fdc_state <= EXEC_READSRC;

when "0010" => — move.w
current_op <= OP_MOVE;
opdatasize <= "10"; — word

— decode effective addresses
src_addrcode <= current_inst (5 downto 0);
dst_addrcode <= current_inst (11 downto 6);
next_fdc_state <= EXEC_READSRC;

when "0011" => — move. |
current_op <= OP_MOVE;
opdatasize <= "11"; — long

—— decode effective addresses
src_addrcode <= current_inst (5 downto 0);

Dylan Leigh 43017239 DRAFT VERSION Page 20 of 52

175

179

181

183

185

189

191

193

199

201

203

207

209

211

217

219

221

227

229

231

A APPENDIX A: CPU SOURCE CODE DRAFT VERSION A.1 m68k_cpu_core.vhd

Dylan Leigh #3017239

dst_addrcode <= current_inst (11 downto 6);
next_fdc_state <= EXEC_READSRC;

when "0100" => — nop
if current_inst(11 downto 0) = "111001110001"
then — no—op
current_op <= OP_NOP;
next_fdc_state <= FETCH_READINS;
else — PANIC due to unimplemented opcode
next_fdc_state <= FDCHALT;
panic <= '1";
report "CPU Panic — unimplemented opcode”
severity FAILURE;
end if;

when "0110" => — branch
if current_inst(11l downto 8) = "0000"
then — branch
current_op <= OP_BRA;
—— decode destination
if current_inst(7 downto 0) = x"00"
then — 16 bit branch — read another word
src_addrcode <= "111100"; — immediate
next_fdc_state <= EXEC_READSRC;
else — 8 bit branch — handle here
if current_inst(7) = "1’
then — sign extend
src_data <= x"FFFFFF" & current_inst (7 downto
0);
else
src_data <= x"000000" & current_inst (7 downto
0);
end if; — sign extend
next_fdc_state <= EXEC_DOOP;
end if; — 8 bit destination

else — PANIC due to unimplemented opcode
next_fdc_state <= FDCHALT;
panic <= '17;
report "CPU Panic — unimplemented opcode”
severity FAILURE;
end if;

—— TODO when "1011" => — cmp (not immediate)
— current_op <= OP_CMP;
— TODO decode effective addresses
— next_fdc_state <= EXEC_READSRC;

when "1101" => — add.b/w/|
current_op <= OP_ADD;
—— detemines source dest order of operands
if (current_inst(8) = '1")
then
next_fdc_state <= FDCHALT;
panic <= '17;
report "CPU Panic — unimplemented adressing mode”
severity FAILURE;
else
opdatasize <= current_inst (7 downto 6);
src_addrcode <= current_inst(5 downto 0);
—— dest is a data register

DRAFT VERSION Page 21 of 52

235

237

239

245

247

249

255

263

265

267

273

275

277

281

283

285

287

291

293

A APPENDIX A: CPU SOURCE CODE DRAFT VERSION A.1 m68k_cpu_core.vhd

dst_addrcode <= "000" & current_inst(11 downto 9);
end if;
next_fdc_state <= EXEC_READSRC;

when "1100" => — and.b/w/|
current_op <= OP_AND;
— decode effective addresses
—— detemines source dest order of operands
if (current_inst(8) = '1")
then
next_fdc_state <= FDCHALT;
panic <= '17;
report "CPU Panic — unimplemented adressing mode”
severity FAILURE;
else
opdatasize <= current_inst (7 downto 6);
src_addrcode <= current_inst(5 downto 0);
—— dest is a data register
dst_addrcode <= "000" & current_inst(11 downto 9);
end if;
next_fdc_state <= EXEC_READSRC;

when others => — PANIC due to unimplemented opcode
next_fdc_state <= FDC_HALT;
panic <= '1";

report "CPU Panic — unimplemented opcode”
severity FAILURE;
end case; — current inst is?

— end outer big decode case statement

when EXEC_READSRC => — TODO direct memory
case src_addrcode(5 downto 3) is
when "000" => — data register
— this should be replaced with an integer/unsigned
—— expression on the array index
case src_addrcode(2 downto 0) is
when "000" => src_data <= data_registers(0);
when "001" => src_data <= data_registers(1);
when "010" => src_data <= data_registers(2);
when "011" => src_data <= data_registers(3);
when "100" => src_data <= data_registers(4);
when "101" => src_data <= data_registers(5);
when "110" => src_data <= data_registers(6);
when "111" => src_data <= data_registers(7);
end case; — src_addrcode register section
next_fdc_state <= EXEC_WAITSRC;

when "001" => — address register

—— this should be replaced with an integer/unsigned
—— expression on the array index
case src_addrcode(2 downto 0) is

when "000" => src_data <= address_registers (

when "001" => src_data <= address_registers (

when "010" => src_data <= address_registers (

when "011" => src_data <= address_registers (

(

(

(

(

when "100" => src_data <= address_registers

when "101" => src_data <= address_registers

when "110" => src_data <= address_registers

when "111" => src_data <= address_registers
end case; — src_addrcode register section
next_fdc_state <= EXEC_WAITSRC;

0)
1)
2)
3);
4)
5)
6)
7)

Dylan Leigh 43017239 DRAFT VERSION Page 22 of 52

295

299

301

303

305

309

311

313

319

321

323

329

331

333

339

341

343

347

349

351

353

APPENDIX A: CPU SOURCE CODE DRAFT VERSION

A.1 m68k_cpu_core.vhd

Dylan Leigh #3017239

"111" => — could be
case src_addrcode(2 downto 0) is

when "000" => — word addr absolute

case extaddrpass is
when "00" =>
addrbus <= program_counter;
busrw <= '0’; —read

immediate , absolute , offset

— note we don't use opdatasize as that is
—— the size of the final value we want not

— the address it is at.
busdatasize <= "10";
busreq <= 'l1’; —request

next_fdc_state <= EXEC_WAITSRC;

when "01" => — pass 2
— read from location we just
addrbus <= src_data;

busrw <= '0’; —read

if opdatasize = "11"

then — long
busdatasize <= "11";

else ——word size, byte is in
busdatasize <= "10";

end if; —datasize

busreq <= '1’; —request

got

lower

next_fdc_state <= EXEC_WAITSRC;

when others =>
next_fdc_state <= FDC_HALT;
panic <= '1";

half

report "CPU Panic — bad extaddrpass”

severity FAILURE;
end case; — extaddrpass

when "001" => — long addr absolute
case extaddrpass is
when "00" =>
addrbus <= program_counter;
busrw <= '0’; —read

— note we don't use opdatasize as that is
—— the size of the final valjue we want not

— the address it is at.
busdatasize <= "11";
busreq <= 'l'; —request

next_fdc_state <= EXEC_WAITSRC;

when "01" => — pass 2
— read from location we just
addrbus <= src_data;

busrw <= '0’; —read

if opdatasize = "11"

then — long
busdatasize <= "11";

else ——word size, byte is in
busdatasize <= "10";

end if; —datasize

busreq <= 'l1’; —request

DRAFT VERSION

got

lower

half

Page 23 of 52

357

361

365

367

369

371

375

377

379

385

387

389

401

403

405

407

A APPENDIX A: CPU SOURCE CODE DRAFT VERSION A.1 m68k_cpu_core.vhd

next_fdc_state <= EXEC_WAITSRC;

when others =>
next_fdc_state <= FDCHALT;
panic <= '1";
report "CPU Panic — bad extaddrpass”
severity FAILURE;
end case; — extaddrpass

when "100" => — immediate
addrbus <= program_counter;
busrw <= '0'; —read
if opdatasize = "11"
then — long
busdatasize <= "11";
else —word size, byte is in lower half
busdatasize <= "10";
end if; —datasize
busreq <= '1'; —request
next_fdc_state <= EXEC_WAITSRC;
— end when immediate

when others =>
next_fdc_state <= FDC_HALT;
panic <= '1";

report "CPU Panic — invalid addresssing mode”
severity FAILURE;
end case; — addr mode 2 downto 0

when others =>
next_fdc_state <= FDC_HALT;
panic <= '1";

report "CPU Panic — unimplemented addressing mode”
severity FAILURE;
end case; — src_addrcode 5 downto 3

when EXEC_WAITSRC => — TODO direct memory
case src_addrcode(5 downto 3) is

when "000" => — data register
— TODO this is necessary for the clocked registers
later

next_fdc_state <= EXEC_READDST;
— TODO seperate ALU next_fdc_state <= EXEC_PUTSRCALU;

when "001" => — address register clock
— TODO this is necessary for the clocked registers
later

next_fdc_state <= EXEC_READDST;
— TODO seperate ALU next_fdc_state <= EXEC_PUTSRCALU;

when "111" => — immediate or direct
if busdone = '1°
then
busreq <= '0'; —end request
case src_addrcode(2 downto 0) is
when "000” => — word absolute address

case extaddrpass is
when "00" => — FIXME test
program_counter <= std_logic_vector (
unsigned (program_counter) + 2);
src_data <= x"0000" & databus(15 downto
0);

Dylan Leigh #3017239 DRAFT VERSION Page 24 of 52

415

417

419

423

425

427

429

431

433

439

441

443

445

447

453

455

457

461

465

A APPENDIX A:

CPU SOURCE CODE DRAFT VERSION A.1 m68k_cpu_core.vhd

Dylan Leigh 43017239 DRAFT VERSION Page 25 of 52

— set to 0l here — we've made 1 pass
extaddrpass <= "01";

next_fdc_state <= EXEC_READSRC;

when "01" => — FIXME test
if current_op = OP_BRA
then
— sign extend
src_data <= x"FFFF" & databus(15

downto 0);
else
src_data <= databus; — regardless of
data size
— both of these
are 32 bits
end if; — current op is branch
extaddrpass <= "10"; — 2nd pass done

next_fdc_state <= EXEC_READDST;
— TODO sep ALU next_fdc_state <=
EXEC_PUTSRCALU;

when others =>
next_fdc_state <= FDC_HALT;
panic <= '1";
report "CPU Panic — bad extaddrpass”
severity FAILURE;
end case; — extaddrpass

when "001" => — long absolute address TODO
program_counter <= std_logic_vector(
unsigned(program_counter) + 4);

— TODO

next_fdc_state <= FDC_HALT;

panic <= '1";

report "CPU Panic — unimplemented addressing
mode”
severity FAILURE;

when "100” => — immediate data
if opdatasize = "11"
then — long

program_counter <= std_logic_vector (
unsigned(program_counter) + 4);
else —word size, byte is in lower half
program_counter <= std_logic_vector (
unsigned(program_counter) + 2);

end if; —datasize

if current_op = OP_BRA
then
—— sign extend
src_data <= x"FFFF" & databus(15 downto 0);

else
src_data <= databus; — regardless of data
size
— both of these are 32
bits
end if; — current op is branch

next_fdc_state <= EXEC_READDST;

467

469

471

473

475

479

481

483

489

491

493

495

497

503

507

A APPENDIX A: CPU SOURCE CODE DRAFT VERSION A.1 m68k_cpu_core.vhd

— TODO sep ALU next_fdc_state <=
EXEC_PUTSRCALU;

when others =>
next_fdc_state <= FDC_HALT;
panic <= '1";

report "CPU Panic — unimplemented addressing
mode”
severity FAILURE;
end case; —immediate or direct
end if; — busdone

when others =>
next_fdc_state <= FDC_HALT;
panic <= '1";

report "CPU Panic — unimplemented addressing mode”

severity FAILURE;
end case; —src_addrcode

when EXEC_READDST => — TODO direct memory
case current_op is
when OP_BRA =>
—— Instruction has only one operand
— Note that for branh, we already skip this state
next_fdc_state <= EXEC_DOOP;
when others =>
case dst_addrcode (5 downto 3) is

when "000" => — data register
— this should be replaced with an integer/
unsigned

— expression on the array index
case dst_addrcode (2 downto 0) is

when "000" => dst_data <= data_registers(0);
when "001" => dst_data <= data_registers(1);
when "010" => dst_data <= data_registers(2);
when "011" => dst_data <= data_registers(3);
when "100" => dst_data <= data_registers(4);
when "101" => dst_data <= data_registers(5);
when "110" => dst_data <= data_registers(6);

(7)

when "111" => dst_data <= data_registers

end case; — dst_addrcode register section
next_fdc_state <= EXEC_WAITDST;

when "001" => — address register
— this should be replaced with an integer/
unsigned

— expression on the array index
case dst_addrcode(2 downto 0) is

when "000" => dst_data <= address_registers (0);
when "001" => dst_data <= address_registers(1);
when "010" => dst_data <= address_registers (2);
when "011" => dst_data <= address_registers(3);
when "100" => dst_data <= address_registers (4);
when "101" => dst_data <= address_registers(5);
when "110" => dst_data <= address_registers (6);

(7):

when "111" => dst_data <= address_registers
end case; — dst_addrcode register section
next_fdc_state <= EXEC_WAITDST;

when "111" => — could be immediate or direct
if src_addrcode(2 downto 0) = "100"

Dylan Leigh #3017239 DRAFT VERSION Page 26 of 52

525

529

533

537

557

563

567

573

577

APPENDIX A: CPU SOURCE CODE DRAFT VERSION A.1 m68k_cpu_core.vhd

then — immediate data invalid as destination
next_fdc_state <= FDC_HALT;
panic <= '1";
report "CPU Panic — immediate addressing used
as dest.”
severity FAILURE;
else
next_fdc_state <= FDC_HALT;
panic <= '1";

report "CPU Panic — unimplemented addressing
mode”
severity FAILURE;
end if; — when 111

when others =>
next_fdc_state <= FDC_HALT;
panic <= '1";
report "CPU Panic — unimplemented addressing mode

severity FAILURE;
end case; — src_addrcode
end case; — need destination data read

when EXEC_WAITDST => — TODO direct memory
case dst_addrcode (5 downto 3) is

when "000" => — data register
— TODO this is necessary for the clocked registers
later

next_fdc_state <= EXEC_DOOP;
— TODO seperate ALU next_fdc_state <= EXEC_PUTDSTALU;

when "001" => — address register clock
— TODO this is necessary for the clocked registers
later

next_fdc_state <= EXEC_DOOP;
— TODO seperate ALU next_fdc_state <= EXEC_PUTDSTALU;
when others =>
next_fdc_state <= FDC_HALT;
panic <= '1";
report "CPU Panic — unimplemented addressing mode”
severity FAILURE;
end case; —src_addrcode

when EXEC_DOOP =>
case current_op is
when OP_MOVE =>
case opdatasize is

when "11" => — long
rslt_data <= src_data;
when "10" => — word

rslt_data <= dst_data(31 downto 16) &
src_data (15 downto 0);
when "01" => — byte
rslt_data <= dst_data(31 downto 8) &
src_data (7 downto 0);
when others =>
next_fdc_state <= FDC_HALT;
panic <= '1";
report "CPU Panic — invalid operation data size”
severity FAILURE;
end case;
next_fdc_state <= EXEC_DOFLAGS;

Dylan Leigh 43017239 DRAFT VERSION Page 27 of 52

581

585

591

595

601

603

609

611

613

619

621

623

627

629

631

633

637

639

A APPENDIX A: CPU SOURCE CODE DRAFT VERSION

A.1 m68k_cpu_core.vhd

when OP_BRA =>
program_counter <=

— Go direct to to

std_logic_vector (
unsigned(program_counter)

+ unsigned(src_data));

next instruction, no flags change

next_fdc_state <= FETCH_READINS;

when OP_ADD =>
case opdatasize is
when "11" =>
rslt_data

<=

when "10" = —
rslt_data <=

when "01" = —
rslt_data <=

when others =>

long
std_logic_vector (unsigned(src_data)
+ unsigned(dst_data));

word

dst_data (31 downto 16) &

std_logic_vector (
unsigned(src_data (15 downto 0))

+ unsigned(dst_data (15 downto 0)));

byte

dst_data (31 downto 8) &

std_logic_vector (
unsigned(src_data (7 downto 0))

+ unsigned(dst_data(7 downto 0)));

next_fdc_state <= FDC_HALT;

panic <= "1’

Panic — invalid operation data size”

severity FAILURE;

report "CPU
end case;
— TODO: this

— also determines

needs to be done

in compnent ALU which
carry/overflow flags

next_fdc_state <= EXEC_DOFLAGS;

when OP_AND =>
case opdatasize is
when "11" =>
rslt_data

when "10" =>
rslt_data

when 701" =>
rslt_data <=

when others =>

long

src_data and dst_data;

word

dst_data (31 downto 16) &
(src_data (15 downto 0) and
dst_data (15 downto 0));

byte

dst_data (31 downto 8) &
(src_data(7 downto 0) and
dst_data (7 downto 0));

next_fdc_state <= FDC_HALT;

panic <= "1’
report "CPU

Panic — invalid operation data size”

severity FAILURE;

end case;
next_fdc_state <=

when others =>

EXEC_DOFLAGS;

next_fdc_state <= FDC_HALT;
panic <= '1";
report "CPU Panic — unimplemented operation”

severity FAILURE;

end case;

when EXEC_DOFLAGS =>

Dylan Leigh 43017239

DRAFT VERSION

Page 28 of 52

641

645

647

649

651

655

661

663

669

671

673

679

681

683

687

689

691

693

697

699

A APPENDIX A: CPU SOURCE CODE DRAFT VERSION

A.1 m68k_cpu_core.vhd

case current_op is — x/carry/overflow

when OP_MOVE | OP_AND =>

—— determine flags

— X not affected by move/and

status_register (0) <= '0’

status_register (1) <= '0";
when OP_ADD =>

— TODO: arithmetic ops set flags
when others =>

next_fdc_state <= FDC_HALT;

panic <= '1";

; ——carryt
—overflow

from ALU in EXEC_DOOP

report "No X/C/O flags coded for op, possible state
error”
severity WARNING;
end case; — current_op for x/carry/overflow
case current_op is — negative/zero — nearly all ops
when OP_MOVE | OP_AND | OP_ADD =>
case opdatasize is
when "01" => — byte
if rslt_data(7 downto 0) = x"00"
then —zero
status_register(2) <= '1'; —zero
status_register(3) <= '0'; —negative
else
status_register (2) <= '0'; ——zero
if rslt_data(7) = "1’
then
status_register(3) <= 'l'; —negative
else
status_register(3) <= '0’; —negative
end if; — negative
end if; — zero
when "10" => — word
if rslt_data (15 downto 0) = x"0000"
then —zero
status_register(2) <= 'l1'; —zero
status_register(3) <= '0’; —negative
else
status_register(2) <= '0'; —zero
if rslt_data(15) = "1’
then
status_register(3) <= 'l’; —negative
else
status_register(3) <= '0'; —negative
end if; — negative
end if; — zero
when "11" => — long
if rslt_data(31 downto 0) = x"00000000"
then —zero
status_register(2) <= '1'; —zero
status_register(3) <= '0’; —negative
else
status_register (2) <= '0'; ——zero
if rslt_data(31) = "1’
then
status_register(3) <= 'l'; —negative
else
status_register(3) <= '0’; —negative
end if; — negative
end if; — zero

Dylan Leigh #3017239 DRAFT VERSION

Page 29 of 52

701

703

705

707

709

711

713

715

719

721

723

725

729

731

733

735

A APPENDIX A: CPU SOURCE CODE DRAFT VERSION

A.1 m68k_cpu_core.vhd

when others =>
next_fdc_state <= FDC_HALT;
panic <= '1";

report "CPU Panic — invalid operation data

severity FAILURE;

end case; — datasize for n/z flags

next_fdc_state <= EXEC_PUTRSLT;

when others =>
next_fdc_state <= FDC_HALT;
panic <= '1";
report "No N/Z flags coded for op
severity WARNING;
end case; — current_op for n/z

when EXEC_PUTRSLT => — TODO direct memory
case dst_addrcode (5 downto 3) is
when "000" => — data register
— this should be replaced with an
— expression on the array index
case dst_addrcode (2 downto 0) is

P

ossible state error

size”

integer/unsigned

when "000" => data_registers(0) <= rslt_data;
when "001" => data_registers(1l) <= rslt_data;
when "010" => data_registers(2) <= rslt_data;
when "011" => data_registers(3) <= rslt_data;
when "100" => data_registers(4) <= rslt_data;
when "101" => data_registers(5) <= rslt_data;
when "110" => data_registers(6) <= rslt_data;
when "111" => data_registers(7) <= rslt_data;
end case; — dst_addrcode register section

next_fdc_state <= EXEC_WAITRSLT;

when "001" => — address register
—— this should be replaced with an
— expression on the array index
case dst_addrcode (2 downto 0) is

integer/unsigned

<= rslt_data;
<= rslt_data;
<= rslt_data;
<= rslt_data;

when "000" => address_registers
when "001" => address_registers
when "010" => address_registers
when "011" => address_registers

when "101" => address_registers <= rslt_data;

743

745

747

749

753

when "110" => address_registers

when "111" => address_registers
end case; — dst_addrcode register
next_fdc_state <= EXEC_WAITRSLT;

(0)
(1)
(2)
(3)
when "100" => address_registers(4) <= rslt_data;
(5)
(6)
(7)

when others =>
next_fdc_state <= FDC_HALT;
panic <= '1";

<= rslt_data;

<= rslt_data;

ction

report "CPU Panic — unimplemented addressing mode”

severity FAILURE;
end case; — src_addrcode

when EXEC_WAITRSLT => — TODO direct memory
case dst_addrcode (5 downto 3) is
when "000" => — data register

— TODO this is necessary for the clocked

later
next_fdc_state <= FETCH_READINS;

Dylan Leigh 43017239 DRAFT VERSION

registers

Page 30 of 52

761

763

765

767

769

773

775

T

779

783

A APPENDIX A: CPU SOURCE CODE DRAFT VERSION A.1 m68k_cpu_core.vhd

when "001" => — address register clock
— TODO this is necessary for the clocked registers
later

next_fdc_state <= FETCH_READINS;
—— TODO seperate ALU next_fdc_state <= EXEC_PUTDSTALU;
when others =>
next_fdc_state <= FDC_HALT;
panic <= '1";
report "CPU Panic — unimplemented addressing mode”
severity FAILURE;
end case; —src_addrcode

when FDC_HALT =>
panic <= '1";
next_fdc_state <= FDC_HALT;

when others = — This should not occur in final version
next_fdc_state <= FDC_HALT;
panic <= '1";
report "CPU Panic — unimplemented state” severity FAILURE;

end case; — end huge current state statement of doom
end if; — rising edge clock
end if; —reset
current_fdc_state <= next_fdc_state;
end process fdc_activity;
end behaviour;

Dylan Leigh #3017239 DRAFT VERSION Page 31 of 52

10

12

14

16

18

20

22

24

26

28

30

34

38

40

42

44

46

48

50

52

54

56

60

B APPENDIX B: DE1 INTERFACE SOURORAFOID¥FERSION

B Appendix B: DE1 Interface Source Code

B.1 m68k del.vhd

— DE1l board <—> 68k cpu interface

— Dylan

— Contr

— SW 9-—

— SW 0—

— KEY3:
— KEY2:
— KEYO:

—— QOutpu
— HEX:

— LEDR9

Leigh s3017239
ols:

8: select program:
00: move/add/branch test
01: move flags test
10: move/and/branch test
11: all memory is a nop

7: Binary clock speed selector
selects divider for auto clock

Reset
Hold for auto clock

Clock (for manual clock)

ts:

Lower bytes of address and data busses

: panic (cpu halts until reset)

—— LEDR2-8: UNUSED

— LEDR1
— LEDRO

— LEDG7

— bus write (should not be lit inside any sample programs)
— Bus request (should be same as busdone)

— Bus done (should be same as bus request)

—— LEDG5—6: Bus data size (should be 10 in the sample programs)
—— LEDGO0—4: SR Flags

library
use ieee
use ieee

ieee;
.std_logic_1164. all;
.numeric_std. all;

entity m68k_del is

port

(

— AIll off the board

KEY :
SW:

in std_logic_vector (3 downto 0);
in std_logic_vector (9 downto 0)

— have to use "0 downto 0" as default pinout uses vectors for all

CLOC

HEXO:
HEX1:
HEX2:
HEX3:

LEDG:
LEDR:

)
end mo68k

K.50: in std_logic;

out std_logic_vector (6 downto 0);

out std_logic_vector (6 downto 0);

out std_logic_vector (6 downto 0);

out std_logic_vector (6 downto 0);

out std_logic_vector (7 downto 0);

out std_logic_vector (9 downto 0)
_del;

architecture mixed of m68k_del is
— logic for displaying 4 bits as a hex digit on the 7 segment display.

compo
p

(

) .

nent hex7seg
ort

inbits: in std_logic_vector (3 downto 0);
hexout: out std_logic_vector(0 to 6)

1

end component;

Dylan Leigh #3017239 DRAFT VERSION

Page 32 of 52

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

100

102

104

106

110

114

120

124

128

B APPENDIX B: DE1 INTERFACE SOURORAFOID¥FERSION

B.1 m68k_del.vhd

— clock divider
component clockdiv is

Port (rst

in std_logic;

clk in std_logic;
clkout : out std_logic;
speed in std_logic_vector (2 downto 0)
)
end component;
— cpu
component m68k_cpu_core is
port (
reset: in std_logic; — active high
clock: in std_logic;
panic: out std_logic; — set high when CPU panics and halts
— nothing changes until manually reset
—— bus controls
busrw: out std_logic; — bus read/write: zero is write
busreq: out std_logic; — set to 1 to make a request from the MMU
busdone: in std_logic; — is set to 1 when request fulfilled by the MMU
busdatasize: out std_logic_vector(l downto 0);
— 68k convention: 01: byte (8), 10: word(16), 11: long (32)

— address bus

addrbus: out std_logic_vector (31 downto 0);
—— data bus

databus: in std_logic_vector (31 downto 0);
— memory writes TODO databus: inout std_logic_vector(31 downto 0)

—— outputs for debugging purposes

flags:
)

end component;

signal clock:
signal busrw:

out std_logic_vector (4 downto 0)

std_logic;
std_logic;

signal busreq: std_logic;

signal busdone: std_logic;

signal busdatasize: std_logic_vector (1l downto 0);
signal addrbus: std_logic_vector (31 downto 0);
signal databus: std_logic_vector(31 downto 0);

signal flags:
signal divclk

begin

std_logic_vector (4 downto 0);

: std_logic;

cpu: m68k_cpu_core port map (

reset => not KEY(3), clock => clock,

panic => LEDR(9),

busrw => busrw, busreq => busreq, busdone => busdone,
busdatasize => busdatasize,
addrbus => addrbus, databus => databus, flags => flags);

— clock divider
div: clockdiv port map (rst => not KEY(3), clk = CLOCK.50,

clkout => divclk , speed => SW(3 downto 1));

— board stuff

— clock manually on keyO or

clock <= (SW(0) and divclk) or (not KEY(0));
— LEDR(7) <= divclk; — distracting

LEDR(4) <= clock;

LEDR(1) <= busrw;

LEDR(0) <= busreq;

Dylan Leigh #3017239

DRAFT VERSION

continuously when keyl pressed

Page 33 of 52

130

132

134

136

140

144

148

150

154

162

166

168

170

172

174

176

178

180

182

184

186

188

192

B APPENDIX B: DE1 INTERFACE SOURORAFOD¥FERSION B.1 m68k_del.vhd

LEDG(7) <= busdone;
LEDG(4 downto 0) <= flags;
LEDG(6 downto 5) <= busdatasize;

hO: hex7seg port map (databus(3 downto 0), HEX0);
hl: hex7seg port map (databus(7 downto 4), HEX1);
h2: hex7seg port map (addrbus(3 downto 0), HEX2);
h3: hex7seg port map (addrbus(7 downto 4), HEX3);
— memory read responses
process (clock)
begin
if rising_edge(clock) then
if (busreq = '1") then
— this program is all reads, word size
assert (busrw = '0")
report "CPU requested a write”

severity WARNING;

assert (busdatasize = "10")
report "Bus data size request
severity WARNING;

not 16 bits”

case SW(9 downto 8) is — select program
when "00" => — from fakemmu_1
— memory reads
case addrbus is
when x”00000100" => — move.w #02, d1l
databus <= "00000000000000000010000001111100";
_— 7 immediate

— | | +— data reg d1l
— | +— word size
— +—— move
when x”00000102" =>
databus <= x"00020002"; — the #%$20002

when x”00000104" => — move.w #03, d2

databus <= "00000000000000000010000010111100";
when x”00000106" =>

databus <= x"00030003"; — the #%$30003

— add together
when x”00000108" => — add d2 to dl
databus <= "00000000000000001101001001000010 ";

—_— " "source data reg 2
— | | |+— word length
— | | +— destination is data
reg
— | 4+— which data register
— 4+ add
when x"0000010A" => — add #5 to dO
databus <= "00000000000000001101000001111100";
—_ - © 7" "immediate
— | | |+— word length
— | | +— destination is data
reg
— | 4+— which data register
— 4+ add
when x"0000010C" => — the #$50005

databus <= x"00050005";

when x"0000010E" => — bra

— the #$50005

$100

databus <= "00000000000000000110000011110000 ";

report

Dylan Leigh 43017239 DRAFT VERSION

"Branching to start...

—— offset
+— branch
" severity NOTE;

Page 34 of 52

194

196

198

200

204

208

212

214

218

222

226

230

232

234

236

240

244

250

252

B APPENDIX B: DE1 INTERFACE SOURORAFOD¥FERSION B.1 m68k_del.vhd

when others =>
report "Memory request from unhandled location”
severity WARNING;
end case;
when "01" => — from fakemmu_2
case addrbus is
when x”00000100" => — move.w #0, dl
databus <= "00000000000000000010000001111100";
_— " immediate
— | | +— data reg d1l
— | +— word size
— +— move
when x”00000102" =>
databus <= x"00000000"; — the #O0

when x”700000104" => — move.w #SDEADBEEF, d2
databus <= "00000000000000000010000010111100";
when x”00000106" =>
databus <= x"DEADBEEF”; — the immediate data

— more to come here when more opcodes implemented
— add and save in dO

when x"00000108" => — bra $100
databus <= "00000000000000000110000000000000 ";
—_— . "—— offset all 0

—_— +— branch
when x”"0000010A" => — bra $100
databus <= x"0000FFF4"; — —12 decimal in word
report "Branching to start...” severity NOTE;

when others =>
report "Memory request from unhandled location’
severity WARNING;
end case;
when "10" => — fakemmu_3
case addrbus is
when x”00000100" => — move.w 10 repeating, dl
databus <= "00000000000000000010000001111100";
_ immediate
— | | +—— data reg d1l
— | +— word size
— +— move

1

when x"00000102" =>
databus <= "10101010101010101010101010101010";

when x”00000104" => — move.w 01 repeating, d2
databus <= "00000000000000000010000010111100";
when x"00000106" =>
databus <= "01010101010101010101010101010101 ";

— and together
when x”00000108" => — and d2 to dl
databus <= "00000000000000001100001001000010";
— - ~ 7" "source data reg 2
— | | |[+— word length
— | | +— destination is data
reg

— | +— which data register
—_— +— and

when x"0000010A" => — and lall to dO
databus <= "00000000000000001100000001111100";

— “immediate
— | | |[+— word length

Dylan Leigh #3017239 DRAFT VERSION Page 35 of 52

260

262

264

268

272

276

278

280

282

B APPENDIX B: DE1 INTERFACE SOURORAFOD¥FERSION B.1 m68k_del.vhd

on is data

— | | +— destinati
reg
— | +— which data register
—_— +— and
when x”0000010C" =>
databus <= x"0000FFFF"; — the #$FFFF

when x"0000010E” => — bra $100
databus <= "00000000000000000110000011110000";
—_ . "—— offset
—_ +— branch

report "Branching to start...” severity NOTE;

when others =>
report "Memory request from unhandled location’
severity WARNING;
end case;
when "11" => — always nop FIXME
databus <= "00000000000000000100111001110001";
end case; —
busdone <= '17;
else — no busreq
busdone <= '0';
databus <= x"00000000";
end if; —busreq
end if; ——clock rising edge
end process;
end mixed;

Dylan Leigh #3017239 DRAFT VERSION

1

Page 36 of 52

11

13

15

17

19

21

23

25

27

29

31

33

B APPENDIX B: DE1 INTERFACE SOURORAFOID¥FERSION

B.2 hexT7seg.vhd

B.2 hexT7seg.vhd
— vim: sw=4 ts=4 et

LIBRARY ieee;
USE ieee.std logic 1164 . all;

ENTITY hex7seg IS
PORT

(

inbits: in std_logic_vector (3 downto 0);
hexout: out std_logic_vector(0 to 6)

)
END hex7seg;

ARCHITECTURE Behavior OF hex7seg

BEGIN
WITH inbits SELECT
hexout <= "1000000"
"1111001"
"0100100"
"0110000"
"0011001"
"0010010"
"0000010"
”1111000"
"0000000"
"0011000"
"0001000"
"0000011"
"1000110"
"0100001"
"0000110"
"0001110"
"1111111"
END Behavior;

Dylan Leigh #3017239

WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN

IS

"0000", —
"0001", —
"0010", —
"oo11", —
"0100", —
"0101", —
"0110", —
"o111", —
"1000", —
"1001", —
"1010", —
"1011", —
"1100", —
"1101", —
"1110", —
"1111", —
OTHERS;

-~ 0 QO N0 TV ©O00O~NOOo~WwWwNH+HO

DRAFT VERSION

Page 37 of 52

10

12

14

16

18

20

22

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

B APPENDIX B: DE1 INTERFACE SOURORAFOID¥FERSION

B.3

clockdiv.vhd

B.3 clockdiv.vhd

—— Adjustable clock divider

— Takes in a signal (usually the board clock), divides

—— amount based on 3 switches.
— vim: ts=4 sw=4 et:

library I|EEE;
use |EEE.STD_LOGIC_1164.ALL;
use |IEEE.STD_LOGIC_ARITH.ALL; — Two very useful
use |IEEE.STD_LOGIC_UNSIGNED.ALL; — IEEE libraries
entity clockdiv is
Port (rst : in std_logic;
clk : in std_logic;
clkout : out std_logic;
speed : in std_logic_vector (2 downto 0)
)

end clockdiv;

architecture behavioral of clockdiv is
signal temp: std_logic_vector (25 downto 0);
begin
process (clk, rst)
begin
if (rst = '1") then
temp <= "00000000000000000000000000 " ;
elsif rising_edge(clk) then
temp <= temp + 1;
end if;
case speed is
when "000" =>

if temp(25) = '1" then
clkout <= '17;
else
clkout <= '0";
end if;
when "001" =>
if temp(24) = "1’ then
clkout <= '1°7;
else
clkout <= '0";
end if;
when "010" =>
if temp(23) = '1" then
clkout <= '1°7;
else
clkout <= '0";
end if;
when "011" =>
if temp(22) = "1’ then
clkout <= '1°7;
else
clkout <= '0";
end if;
when "100" =>
if temp(21) = "1’ then
clkout <= '1°";
else
clkout <= '0";
end if;
when "101" =>
if temp(19) = '1" then
clkout <= '1°";
else

Dylan Leigh #3017239 DRAFT VERSION

selectable

Page 38 of 52

66

68

70

72

74

76

78

80

B APPENDIX B: DE1 INTERFACE SOURORAFOID¥FERSION

B.3

clockdiv.vhd

clkout <=
end if;
when "110" =>
if temp(18) =
clkout <=
else
clkout <=
end if;
when "111" =>

if temp(1l7) =~

clkout <=
else
clkout <=
end if;
end case;
end process;
end behavioral

Dylan Leigh #3017239

1o

[y

[y

then

" then

DRAFT VERSION

Page 39 of 52

C APPENDIX C: TEST MMU FILES DRAFT VERSION

C Appendix C: Test MMU Files

C.1 m68k_fakemmu_1.vhd

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

52

54

56

58

60

62

fake/test "mmu” for m68k

returns various values set here depending on data requested.
test of move, add and branch

Dylan Leigh s3017239

library ieee;

use
use

ieee.std logic 1164 . all;
ieee.numeric_std. all;

entity m68k fakemmu_1 is

end

m68k_fakemmu_1;

architecture mixed of m68k _fakemmu_1 is

component m68k _cpu_core is

port (
reset: in std_logic; — active high
clock: in std_logic;
panic: out std_logic; — set high when CPU panics and halts
— nothing changes until manually reset
— bus controls
busrw: out std_logic; — bus read/write: zero is write
busreq: out std_logic; — set to 1 to make a request from the MMU
busdone: in std_logic; — is set to 1 when request fulfilled by the MMU

busdatasize: out std_logic_vector (1l downto 0);
— 68k convention: 01: byte (8), 10: word(16), 11: long (32)

— address bus

addrbus: out std_logic_vector (31 downto 0);
— data bus

databus: inout std_logic_vector (31 downto 0);

—— for debugging
flags: out std_logic_vector(4 downto 0)

)

end component;

signal reset: std_logic;

signal clock: std_logic;

signal busrw: std_logic;

signal busreq: std_logic;

signal busdone: std_logic;

signal busdatasize: std_logic_vector (1l downto 0);
signal addrbus: std_logic_vector(31 downto 0);
signal databus: std_logic_vector(31 downto 0);

begin
cpucore: m68k_cpu_core
port map (
reset => reset, clock => clock, — panic = null,

— Note: we ignore panic as in simulation the CPU core will

— raise an assertion itself on a panic.

busrw => busrw, busreq => busreq, busdone => busdone,

busdatasize => busdatasize, addrbus => addrbus, databus => databus

)
busread: process (busreq)
begin
if rising_edge(busreq)
then

Dylan Leigh #3017239 DRAFT VERSION Page 40 of 52

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

110

114

120

124

128

C APPENDIX C: TEST MMU FILES DRAFT VERSION C.1 m68k_fakemmu_1.vhd

assert (busrw = '0")
report "Bus requested a read.”
severity WARNING;
assert (busdatasize = "10")
report "Bus data size request not 16 bits.”
severity WARNING;

— memory reads
case addrbus is
when x"00000100"” => — move.w #02, dl
databus <= "00000000000000000010000001111100";
- ~ immediate
— | | +— data reg d1l
— | +— word size
— +— move
when x"00000102" =>
databus <= x"00020002"; — the #%$20002

when x"00000104" => — move.w #03, d2

databus <= "00000000000000000010000010111100";
when x"00000106" =>

databus <= x"00030003"; — the #$30003

—— add together
when x"00000108" => — add d2 to dl
databus <= "00000000000000001101001001000010 ";

— . ~ 7" "source data reg 2
— | | |+— word length
— | | +— destination is data
— \ +— which data register
— +— add

when x"0000010A” => — add #5 to dO
databus <= "00000000000000001101000001111100";
— . T 77 “immediate
\ | |+— word length
— | | +— destination is data
\ +— which data register

— +— add

when x"0000010C" => — the #$50005
databus <= x"00050005"; — the #$50005

when x"0000010E” => — bra $100
databus <= "00000000000000000110000011110000 ";
— - "—— offset
—_ +— branch
report "Branching to start..."” severity NOTE;

when others =>
report "Memory request from unhandled location”
severity WARNING;
end case;
busdone <= '1";

else — no busreq
busdone <= '0';
databus <= x"00000000";
end if;—busreq
end process busread;

init_run: process
begin
reset <= '1";
clock <= '0";
wait for 1 ms;

Dylan Leigh #3017239 DRAFT VERSION

reg

reg

Page 41 of 52

130

132

134

136

140

144

148

C APPENDIX C: TEST MMU FILES

DRAFT VERSION

C.1 m68k_fakemmu_1.vhd

clock <= "1";
wait for 1 ms;

reset <= '0";
wait for 1 ms;

— from this point,

while (true)
loop
clock <= '0";
wait for 1 ms;
clock <= "1";
wait for 1 ms;
end loop;

wait for 1000 ms;

end process init_run;
end mixed;

Dylan Leigh #3017239

the other

stuff does the work

DRAFT VERSION

Page 42 of 52

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

48

50

52

54

56

58

60

62

64

C APPENDIX C: TEST MMU FILES

DRAFT VERSION

C.2 m68k_fakemmu_2.vhd

C.2 m68k_fakemmu 2.vhd

— fake/test "mmu” for m68k

—— returns various values set here depending on data

—— this one for testing flags
—— Dylan Leigh s3017239

library ieee;
use ieee.std logic 1164 . all;
use ieee.numeric_std. all;

entity m68k fakemmu_2 is
end mo68k_fakemmu_2;

requested .

in move instruction and long branch

architecture mixed of m68k _fakemmu_2 is

component m68k_cpu_core is

port (
reset: in std_logic; — active high
clock: in std_logic;
panic: out std_logic; — set high when CPU panics and halts
— nothing changes until manually reset
— bus controls
busrw: out std_logic; — bus read/write: zero is write
busreq: out std_logic; — set to 1 to make a request from the MMU
busdone: in std_logic; — is set to 1 when request fulfilled by the MMU

busdatasize: out std_logic_vector (1l downto 0);

— 68k convention :

— address bus

01:

byte (8), 10: word(16)

addrbus: out std_logic_vector (31 downto 0);

—— data bus

databus: inout std_logic_vector (31 downto 0)

)

end component;

signal reset: std_logic;
signal clock: std_logic;
signal busrw: std_logic;
signal busreq: std_logic;
signal busdone: std_logic;

signal busdatasize: std_logic_vector (1l downto 0);
signal addrbus: std_logic_vector(31 downto 0);
signal databus: std_logic_vector(31 downto 0);

begin
cpucore: m68k_cpu_core
port map (

, 11: long (32)

reset => reset, clock => clock, — panic = null,
—— Note: we ignore panic as in simulation the CPU core will

— raise an assertion
busrw => busrw, busreq => busreq,

itself on a panic.

busdatasize => busdatasize, addrbus => addrbus,

)

busread: process (busreq)
begin
if rising_edge(busreq)
then
assert (busrw = '0")

report "Bus requested a read.”

severity WARNING;

assert (busdatasize = "10")

report "Bus data
severity WARNING;

Dylan Leigh #3017239

size

request not 16 bits.”

DRAFT VERSION

busdone => busdone,

databus => databus

Page 43 of 52

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

102

104

106

108

112

116

122

126

C APPENDIX C: TEST MMU FILES

DRAFT VERSION

C.2 m68k_fakemmu_2.vhd

— fake memory reads
case addrbus is

when x"00000100" => — move.w #0, dl
databus <= "00000000000000000010000001111100";

when x"00000102" =>

immediate

— | | +— data reg d1l
— | +— word size
— +— move

databus <= x"00000000"; — the #O0

when x"00000104" => — move.w #$BEEF,
databus <= "00000000000000000010000010111100";

when x"00000106" =>

databus <= x"0000BEEF"; — the

— more to come here when more opcodes

— add and save in dO

when x"00000108" => — bra $100
databus <= "00000000000000000110000000000000 " ;

d2

immediate data

implemented

—— offset
—_ +— branch
when x"0000010A"” => — bra $100
databus <= x”"0000FFF4"; — —12 decimal in word
report "Branching to start..."” severity NOTE;

when others =>

report "Memory request from unhandled location”

severity WARNING;
end case;
busdone <= '1";

else — no busreq
busdone <= '0';
databus <= x"00000000";
end if;—busreq
end process busread;

init_run: process
begin
reset <= '1";
clock <= '0";
wait for 1 ms;

clock <= '1";
wait for 1 ms;

reset <= '0';
wait for 1 ms;

—— from this point, the other

while (true)
loop
clock <= '0";
wait for 1 ms;
clock <= "1";
wait for 1 ms;
end loop;

wait for 1000 ms;

end process init_run;
end mixed;

Dylan Leigh #3017239

stuff does the work

DRAFT VERSION

all

0

Page 44 of 52

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

IS
<

47

49

51

53

55

57

59

61

63

C APPENDIX C: TEST MMU FILES DRAFT VERSION C.3 m68k fakemmu 3.vhd

C.3 m68k_fakemmu_3.vhd

— fake/test "mmu” for m68k

—— returns various values set here depending on data requested.
— test of move, and and branch

—— Dylan Leigh s3017239

library ieee;
use ieee.std logic 1164 . all;
use ieee.numeric_std. all;

entity m68k fakemmu_3 is
end mo68k_fakemmu_3;

architecture mixed of m68k fakemmu_ 3 is
component m68k_cpu_core is

port (
reset: in std_logic; — active high
clock: in std_logic;
panic: out std_logic; — set high when CPU panics and halts
— nothing changes until manually reset
— bus controls
busrw: out std_logic; — bus read/write: zero is write
busreq: out std_logic; — set to 1 to make a request from the MMU
busdone: in std_logic; — is set to 1 when request fulfilled by the MMU

busdatasize: out std_logic_vector (1l downto 0);

— 68k convention: 01: byte (8), 10: word(16), 11: long (32)

—— address bus

addrbus: out std_logic_vector (31 downto 0);

— data bus

databus: inout std_logic_vector (31 downto 0)
)

end component;

signal reset: std_logic;

signal clock: std_logic;

signal busrw: std_logic;

signal busreq: std_logic;

signal busdone: std_logic;

signal busdatasize: std_logic_vector (1l downto 0);
signal addrbus: std_logic_vector(31 downto 0);
signal databus: std_logic_vector(31 downto 0);

begin
cpucore: m68k_cpu_core
port map (
reset => reset, clock => clock, — panic = null,
—— Note: we ignore panic as in simulation the CPU core will
— raise an assertion itself on a panic.
busrw => busrw, busreq => busreq, busdone => busdone,
busdatasize => busdatasize , addrbus => addrbus, databus => databus
)
busread: process (busreq)
begin
if rising_edge(busreq)
then

assert (busrw = '0")
report "Bus requested a read.”
severity WARNING;
assert (busdatasize = "10")
report "Bus data size request not 16 bits.”
severity WARNING;

Dylan Leigh #3017239 DRAFT VERSION

Page 45 of 52

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

103

107

113

117

121

125

C APPENDIX C: TEST MMU FILES DRAFT VERSION C.3 m68k fakemmu 3.vhd

—— memory reads
case addrbus is
when x"00000100" => — move.w 10 repeating, dl
databus <= "00000000000000000010000001111100";
- ~ immediate
— | | +— data reg d1l
— | +— word size
— +— move
when x"00000102" =>
databus <= "10101010101010101010101010101010";

when x"00000104" => — move.w 01 repeating, d2
databus <= "00000000000000000010000010111100";
when x"00000106" =>
databus <= "01010101010101010101010101010101 ";

— and together
when x"00000108"” => — and d2 to dl
databus <= "00000000000000001100001001000010 ";
— . ~ 7" "source data reg 2
— | | |+— word length
— | | +— destination is data
— \ +— which data register

— +— and

when x"0000010A" => — and lall to dO
databus <= "00000000000000001100000001111100";
— - © "7 "immediate
| [+— word length
| +— destination is data
4+— which data register

|
|
|
— +4— and

when x"0000010C" =>
databus <= x"0000FFFF"; — the #$FFFF

when x"0000010E” => — bra $100
databus <= "00000000000000000110000011110000 ";
— - "—— offset
—_ +— branch
report "Branching to start..."” severity NOTE;

when others =>
report "Memory request from unhandled location”
severity WARNING;
end case;
busdone <= '1";

else — no busreq
busdone <= '0';
databus <= x"00000000";
end if;—busreq
end process busread;

init_run: process
begin
reset <= '1";
clock <= '0";
wait for 1 ms;

clock <= '1";
wait for 1 ms;

reset <= '0';
wait for 1 ms;

Dylan Leigh #3017239 DRAFT VERSION

reg

reg

Page 46 of 52

133

137

141

143

C APPENDIX C: TEST MMU FILES

DRAFT VERSION

C.3 m68k_fakemmu_3.vhd

— from this point, the other

while (true)
loop
clock <= '0";
wait for 1 ms;
clock <= "1";
wait for 1 ms;
end loop;

wait for 1000 ms;

end process init_run;
end mixed;

Dylan Leigh #3017239

stuff does the work

DRAFT VERSION

Page 47 of 52

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

48

50

52

54

56

58

60

62

64

C APPENDIX C: TEST MMU FILES DRAFT VERSION C.4 m68k_fakemmu_4.vhd

C.4 m68k_fakemmu 4.vhd

— fake/test "mmu” for m68k

—— returns various values set here depending on data requested.
— this one tests absolute addressing

—— Dylan Leigh s3017239

library ieee;
use ieee.std logic 1164 . all;
use ieee.numeric_std. all;

entity m68k fakemmu_4 is
end mo68k_fakemmu_4;

architecture mixed of m68k fakemmu 4 is
component m68k_cpu_core is

port (
reset: in std_logic; — active high
clock: in std_logic;
panic: out std_logic; — set high when CPU panics and halts
— nothing changes until manually reset
— bus controls
busrw: out std_logic; — bus read/write: zero is write
busreq: out std_logic; — set to 1 to make a request from the MMU
busdone: in std_logic; — is set to 1 when request fulfilled by the MMU

busdatasize: out std_logic_vector (1l downto 0);

— 68k convention: 01: byte (8), 10: word(16), 11: long (32)

—— address bus

addrbus: out std_logic_vector (31 downto 0);

— data bus

databus: inout std_logic_vector (31 downto 0)
)

end component;

signal reset: std_logic;

signal clock: std_logic;

signal busrw: std_logic;

signal busreq: std_logic;

signal busdone: std_logic;

signal busdatasize: std_logic_vector (1l downto 0);
signal addrbus: std_logic_vector(31 downto 0);
signal databus: std_logic_vector(31 downto 0);

begin
cpucore: m68k_cpu_core
port map (
reset => reset, clock => clock, — panic = null,
—— Note: we ignore panic as in simulation the CPU core will
— raise an assertion itself on a panic.
busrw => busrw, busreq => busreq, busdone => busdone,
busdatasize => busdatasize , addrbus => addrbus, databus => databus
)i
busread: process (busreq)
begin
if rising_edge(busreq)
then

assert (busrw = '0")
report "Bus requested a read.”
severity WARNING;
assert (busdatasize = "10")
report "Bus data size request not 16 bits.”
severity WARNING;

Dylan Leigh #3017239 DRAFT VERSION

Page 48 of 52

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

102

104

106

108

112

116

122

126

130

C APPENDIX C: TEST MMU FILES DRAFT VERSION C.4 m68k_fakemmu_4.vhd

case addrbus is
when x"00000100" => — move.w $1a0, dl1
databus <= "00000000000000000010000001111000";
- absolute source
— | | +— to data reg dl
— | +— word size
—— +— move
when x"00000102" =>
databus <= x”"000001A0"; — the address 1a0

when x"00000104" => — move.w $1bb, d2
databus <= "00000000000000000010000010111000";
- absolute source
— | | +— to data reg d2
— | +— word size
—— +— move
when x"00000106" =>
databus <= x”"000001bb"”; — the address

— more to come here when more opcodes implemented
— add and save in dO

when x"00000108" => — bra $100
databus <= "00000000000000000110000000000000 ";
—_ . "—— offset all 0

—_ +— branch
when x"0000010A" => — bra $100 offset
databus <= x"0000FFF4"; — —12 decimal in word
report "Branching to start...” severity NOTE;

—— addresses for data
when x"000001A0" =>
databus <= x"00001111"; — data at 1AO0

when x"000001BB" =>
databus <= x"00002222"; — data at 1BB

when others =>
report "Memory request from unhandled location’
severity WARNING;
end case;
busdone <= '1°';

else — no busreq
busdone <= '0';
databus <= x"00000000";
end if;—busreq
end process busread;

init_run: process
begin
reset <= '1";
clock <= '0";

wait for 1 ms;

clock <= "1";
wait for 1 ms;

reset <= '0";
wait for 1 ms;

— from this point, the other stuff does the work

while (true)

Dylan Leigh #3017239 DRAFT VERSION

Page 49 of 52

132

134

136

138

C APPENDIX C: TEST MMU FILES

DRAFT VERSION

C.4 m68k_fakemmu_4.vhd

loop
clock <= '0";
wait for 1 ms;
clock <= "1";
wait for 1 ms;
end loop;

wait for 1000 ms;

end process init_run;
end mixed;

Dylan Leigh #3017239

DRAFT VERSION

Page 50 of 52

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

D APPENDIX D: MAKEFILE

DRAFT VERSION

D Appendix D: Makefile

Makefile for building m68k with GHDL
Dylan Leigh s3017239

#
Macros/Variables

#

does not include testbenches
VHDLSRCS= m68k_cpu_core . vhd
#VHDLSRCS= gen_register .vhd
VHDLOBJS= ${VHDLSRCS:.vhd=.0}

#testbench sources
H#TESTSRCS= test_gen_register.vhd attic

TESTSRCS= m68k_fakemmu_1.vhd m68k_fakemmu_2.vhd m68k_fakemmu_3.vhd m68k_fakemmu_4 .vhd

TESTOBJS= ${TESTSRCS:.vhd=.0}
TESTEXES= ${TESTSRCS:.vhd=}

regfile_8 .vhd

testbenches and

attic also has alu

runs testbenches

makefiles, "all” does not mean

final product

#

High level targets

#

.PHONY: default all alltests runtests clean
builds all components and all

default: runtests

Note: following the common usage for

"everything” but to build all of the

(i.e. no testbenches or extra stuff).

all: ${VHDLOBJS}

analyse tests
alltests: all ${TESTOBJS}

elaborate and execute tests

runtests: alltests
ghdl —elab—run
ghdl —elab—run
ghdl —elab—run
ghdl —elab—run

m68k_fakemmu_1
m68k_fakemmu_2
m68k_fakemmu_3
m68k_fakemmu_4

#

Implicit targets

#

clear out all suffixes
.SUFFIXES:

list only those we use

.SUFFIXES: .o .vhd
.vhd.o: $<
ghdl —a $<
0.0 $<
ghdl —e $@
#
Misc targets
#
clean:
ghdl —remove

——stop—time=300ms —wave=fakemmu_1.ghw
——stop—time=200ms —wave=fakemmu_2 .ghw
——stop—time=300ms —wave=fakemmu_3.ghw
——stop—time=300ms —wave=fakemmu_4 . ghw

rm —f x.ghw %.0 work—obj93.cf ${TESTEXES}

Dylan Leigh 43017239

DRAFT VERSION

Page 51 of 52

E APPENDIX E: TIMING AND PERFORMRNEE VERSION

E Appendix E: Timing and Performance

This section applies to the original EEET2192 implementation. The new version of the CPU has not yet been
tested on the Altera Quartus system.

E.1 Timing
Worst case tco was 19.107ns, implying an fy,.c0f 52.337 MHz. The system has been tested in hardware running
directly off the 50Mhz clock signal without any problems.

Timing was not a major consideration as there were no speed performance requirements; the focus was on
implementing features and compatibility, without aiming for any particular clock speed. There were no tradeoffs
made for timing reasons, and no changes to the design for timing issues.

E.2 Logic Elements Used

1107 combinatorial functions and 774 logic registers were used, in total 1298 logic elements. This is only 7% of
the available elements on the EP2C20F484C7 device - no changes needed to be made to the design.

As the arithmetic addition was performed with IEEE NUMERIC_STD functions, the synthesizer was able to make
use of the dedicated arithmetic logic elements within the device.

E.3 CPU Performance

As stated earlier the CPU runs at 50MHz without problems. Some improvements could be made to the number
of clock cycles taken to execute an instruction. Many of the CPU states are waiting for memory requests to
complete, and many operations could feasibly be performed in parallel, or within other states.

Dylan Leigh #3017239 DRAFT VERSION Page 52 of 52

	I Features and Usage
	Features
	Current Capabilities
	Development Tools

	CPU Instruction Set
	Move
	Branch
	Add
	And
	No-op

	Interface with DE1 Board
	Overview
	Structural Design Notes
	Pin Assignments

	Using the Interface
	Outputs

	II Development
	Design
	Early Component Design
	Final Component Design
	Initial Fetch-Decode-Execute Cycle States
	Instruction Decoder
	MMU and Buses
	Design for Absolute Addressing
	Final Fetch-Decode-Execute Cycle States

	Implementation Notes
	Debugging

	Testing
	Sample Programs
	Move/Add/Branch Test
	Move Flag and Branch Test
	Move/And/Branch Test
	Absolute Addressing Test

	Simulation Waveforms
	Move/Add/Branch Test
	Move Flag and Branch Test
	Move/And/Branch Test
	Absolute Addressing Test

	Future Development
	Hardware RAM
	Instruction Set
	Extended addressing modes
	Parameterizing memory access
	System Mode instructions

	III Appendices
	Appendix A: CPU Source Code
	m68k_cpu_core.vhd

	Appendix B: DE1 Interface Source Code
	m68k_de1.vhd
	hex7seg.vhd
	clockdiv.vhd

	Appendix C: Test MMU Files
	m68k_fakemmu_1.vhd
	m68k_fakemmu_2.vhd
	m68k_fakemmu_3.vhd
	m68k_fakemmu_4.vhd

	Appendix D: Makefile
	Appendix E: Timing and Performance
	Timing
	Logic Elements Used
	CPU Performance

